Skip to Content

Investigating hydrologic connectivity as a driver of biogeochemical flood response in wetland systems

Active Dates 9/1/2022-8/31/2025
Program Area Environmental Systems Science
Project Description
Wetlands are critical “control points” for nutrient processing and retention, improving water quality in streams and rivers. In particular, wetlands are important for removing nitrogen (N), mitigating negative impacts such as eutrophication in downstream waters. Much of N processing in wetlands is carried out by microbes that live in the soil, whose activity is regulated in part by the availability and quality of organic matter (i.e., dead plant material) and oxygen. Flood disturbances affect both organic matter delivery and oxygen dynamics in wetlands, potentially altering N removal processes. However, we do not understand how hydrologic connectivity, that is, the mode through which wetlands receive and export water, affects organic matter delivery to floods or the subsequent effects on wetland N removal. The objective of this study is to investigate wetland hydro-biogeochemical responses (specifically, N processing) to flood disturbances and the subsequent impacts on watershed nutrient export. We will use event-centered measurements at the wetland and watershed scales to integrate wetland and watershed models to advance our predictive capacity for assessing how flood disturbances impact watershed biogeochemical cycling and nutrient export. This study will address the DOE stated need to understand how flood disturbance impacts watershed biogeochemical function.
Award Recipient(s)
  • University of Alabama Tuscaloosa (PI: Jones, Charles)